
Surface Eletromyography Sensing Board

Ayush Chakraborty, Rucha Dave, and Jiayuan Liu

December 18, 2022

1 Introduction

Electromygraphy is a medical tool used to evaluate the health of individual muscles and
the nerve cells that dictate their movement. The intention of this project was to design a
four-channel surface electromygraphy (sEMG) printed circuit board in order to process
real-time electromyographic signals generated from a user’s muscle movements. The
board was intended to communicate with a user’s computer via Bluetooth and Serial
to provide flexibility to the physical setup, along with portability for ease of access to
EMG information. The full hardware and software implementation can be found here.

2 Schematic Design

When creating the schematic for our EMG board, we researched various circuit designs
that fit within both our budget and the scope of the project. We discussed the benefits
of each, seeking guidance from our professor, before finalizing the circuit shown in Fig-
ure 1 below.

Figure 1: Circuit Diagram of Signal Processing for EMG

However, before beginning to process the signal, we need to use a differential ampli-
fier to amplify the difference between the signals received between the two EMG nodes.

1

https://github.com/ayushchakra/emg-sensing

This was done by using an instrumentation amplifier chip (In-Amp), shown in Figure 2.

Figure 2: Circuit Diagram for Differential Amplification for EMG Signals

Starting by just considering one channel, our goal was to process the incoming signal
to be normalized against a reference, filtered to remove noise, and then modified to
represent a signal the computer could easily analyze. This process involves three steps:
high pass filter/amplifier, rectifier, and level shifter/low pass filter/amplifier.

1. High Pass Filter and Amplifier: The first task after receiving a signal from
the sensor was to remove noise that had a low frequency (ex: long term decay in
signal). The portion of the circuit in Figure 1 furthest to the left depicts this.
The cutoff frequency is given by the equation fc = 1

2πRC . Based on this, our
circuit has a high pass cutoff frequency of 20.2 Hz. This means signals below this
frequency are removed. Additionally, this portion of the filter also amplifies the
signal by 8100

787 , or about 10 times.

2. Rectifier: After low frequency noise was removed from the signal, the signal was
rectified to have a reference of 1.65V. This means that, making 1.65V the new
"zero" point, all portions of the signal below 1.65V are made "positive". For
example, 1.60V would now be 1.70V. The entire signal is now contained between
1.65V and 3.3V without having lost any data. In Figure 1, this is the central
portion of the circuit.

3. Level Shifter, Low Pass Filter, and Amplifier: Finally, after having mod-
ified the signal, it needed to be put through a low pass filter to remove high
frequency noise (background nose or outside interference) and further amplified.

2

Additionally, it also needed to be re-referenced to 0V to make further analysis
easier. The right-most portion of Figure 1’s circuit depicts this process. Here,
the low pass filter has a cutoff frequency of fc = 1

2πRC with R = 9.09kΩ and C =
0.033µ F. This makes the cutoff frequency 530 Hz. All frequencies above this are
removed from the data. Next, the signal is shifted so that 1.65V moved to 0V.
This results in the signal ranging from 0V to 1.65V. Finally, the amplifier is 2x,
allowing the signal that originally encompassed only 0 to 1.65V to now double in
amplitude and cover the entire range from 0 to 3.3V.

3 LTspice Simulation

In order to validate the proposed signal processing system, we decided to simulate the
bandpass filter, rectifier, and level shifter in LTspice. To start, we simulated each indi-
vidual component individually. When running these isolated tests, we were validating
the following:

1. The high pass filter and amplifier has a gain of 10 and its characteristic frequency
is around 20 Hz.

2. The rectifier properly rectifies the signal with a 1.65V reference.

3. The level shifter, amplifier, and second order low pass filter has a characteristic
frequency of 530 Hz and properly shifts the signal to encompass the full 0.0V to
3.3V measurable range.

Once each individual component was validated, they were integrated together to resem-
ble the actual signal processing module. To test the full signalling process, we inputted
a wide range of signals, some out of the expected frequency range and some within
that range and examined if the output was as expected. Figure 3 depicts an example
input-output for a signal with a frequency of 100 Hz and amplitude of 150 mV (which
is the highest expected amplitude being inputted to this module). 100 Hz is within the
desired frequency and should be amplified. Figure 4 depicts an example input-output
for a signal with a frequency of 0.5 Hz and amplitude of 150 mV. 0.5 Hz is outside of
the desired frequency and should be filtered.

Figure 3: Simulation of signal processing of signal with frequency within the desired
range (100 Hz). Green represents the output signal and red represents the input

3

Figure 4: Simulation of signal processing of signal with frequency outside the desired
range (0.5 Hz). Green represents the output signal and red represents the input

Since the simulation behaved as expected for several different inputs that account for
the signals we were expecting, we were fairly confident in our schematic design, allowing
us to move forward to developing the circuit board layout.

4 Additional Parts

Finally, we needed to include numerous additional parts to our board to pull it together
for the final purpose. We used multiple bulk and bypass capacitors, a Bluetooth module,
RP2040, RP2040 memory device, a potentiometer, etc. These all involved their own
circuitry. A complete circuit is given in our GitHub here. A full list of all parts used is
provided in Section 6 (Bill of Materials).

5 Layout Design

While developing the layout for our EMG sensing board, we had to design it with the
following constraints in mind:

1. Minimize the overall area of the board. This allows for the EMG sensing to be as
portable as possible.

2. Allow for easy access to the EMG signal input pin headers to minimize disorderly
wiring that could interfere with consistent signalling.

While developing, we had two main iterations to the design: one two layer design and,
based on received feedback, one four layer design.

5.1 Iteration 1 - Two Layer Board

For our first iteration, we planned a two layer board, where the top layer was for power
and signals, while the bottom layer was for ground and signal. To start, each footprint
was organized into separate component groups, which were power management, each of
the four signal processing modules, and the micro controller. Then, they were placed
relative to each other, adhering to any specifications on each data sheet (ex: bypass

4

https://github.com/ayushchakra/emg-sensing

capacitors within 10mm of their corresponding pad, RP2040’s memory device placed as
close as possible to the RP2040). This was done without traces to easily shift compo-
nents, while trying to minimize space to adhere to design constraint 1.

Once organized, each individual component group was placed relative to each other. We
chose to place the EMG signal input pin headers on the very bottom edge of the board,
all next to each other, for easy access. Then, each individual signal processing group was
placed near the corresponding pin headers. The power management module was placed
right of these signals, allowing for the shortest path between power and the signalling
devices that require power. Finally, the micro controller and other corresponding parts
were placed in above the signal processing modules, allowing their output to be routed
directly to the RP2040. Then, the traces between each component were routed, starting
with the 3.3V power source, then the 1.65V power source, and finally each of the signal
lines. This led to a rather messy layout, as can be seen in Figure 5.

Figure 5: First Iteration of EMG Board Layout.

The primary concern was that due to the close proximity of the numerous digital signals
being routed from the RP2040 to the digital potentiometers and operational amplifiers,
there would be significant cross-talk between the lines, causing logical errors when us-
ing the board. This become the basis for the next iteration. Another concern was the
rather messy power distribution. Since we had to routed +1.65V and +3.3V through-
out the signal processing modules, there were significant crosses between the two lines,
causing concern about providing consistent power to each integrated circuit component.

5

5.2 Iteration 2 - Four Layer Board

For the second layout design, we chose to implement a four year board, where the board
stack up from top to bottom was as follows: power and signal, ground and signal, power,
ground and signal. The reason for the third layer containing a power layer was so that
the +3.3V could be provided solely through this layer, while only +1.65V would be
routed through the top layer, leading to a simpler power distribution.

Additionally, the availability of two additional layers meant that the digital signals
from the RP2040 could be more evenly distributed and routed away from each other
to preserve signal integrity. In terms of component placement, the placement in the
two-layer design was only slightly modified to move components closer together since
the top layer required less room for traces. This led to a smaller overall board, better
adhering to the first design constraint. The updated layout can be seen in Figure 6.

Figure 6: Second Iteration of EMG Board Layout.

While there were significantly more vias in this design, the presence of extra layers
allowed for interruptions of the ground plane to be evenly distributed, allowing us to
maintain two relatively continuous ground planes. This served as our final layout design
for this revision of the board.

6 Bill of Materials

In order to physically create the board, the following components were used (per board):

6

Component Name Quantity
0.1µF Capacitor 22
0.33µF Capacitor 8
1µF Capacitor 7
10µF Capacitor 6

0.033µF Capacitor 4
10kΩ Resistor 22
100kΩ Resistor 13
453Ω Resistor 8
909Ω Resistor 8
1kΩ Resistor 6
787Ω Resistor 4
8.1kΩ Resistor 4
9.09kΩ Resistor 4
5.1kΩ Resistor 2
27Ω Resistor 2

Schottky Diode 8
LED 6

Differential Amplifier (MCP6N11) 4
Digital Potentiometer (ISL90462WIH627Z-TKCT-ND) 4

Quad Operational Amplifier (MCP6024) 4
Serial Flash Memory (W25Q128JV) 1

RP2040 1
BLE Module (RN4871) 1

Linear Regulator (MCP1702T) 1
Single Operational Amplifier (MCP6021) 1.555

Ceramic Resonator 1
Buttons 2

USB A Male Connector 1
01x09 Male Pin Header 1
01x03 Male Pin header 1

Table 1: Bill of Materials

The detailed part sheet, include part references and specific part models, can be found
here.

7 Circuit Board Population

We made several attempts before successfully assembled a fully functional PCB board.
The biggest challenge in the assembly process came from soldering the RP2040 and the
Serial Flash Memory device as they were both QFN packages. For both of the first two
boards we populated, we were unable to establish a connection between the RP2040 and
a laptop. While debugging the issue, we noticed that the power indicator was flickering

7

https://docs.google.com/spreadsheets/d/11DgLzIWRdh5BubuOiiBkJtaQQjjR8HkK38gM1tA7Nxc/edit#gid=0

rather than maintaining a constant brightness, leading us to believe that there was an
issue with our power distribution on the board. Upon further investigation, we found
that the voltage output of the linear regulator that stepped the USB 5V input down
to 3.3V was inconsistent, oscillating between 0V and 2.3V. It was also reaching signif-
icantly high temperatures. Using a thermal camera, we found that there was another
elevated thermal area on the RP2040, suggesting that there was a short between two
pads. This problem was resolved by reflowing the board and using a soldering iron to
remove any new shorts between pads. This allowed us to establish a connection between
the RP2040 and a laptop.

Another issue we encountered was, whenever we flashed code on to the RP2040, it im-
mediately reset and became ready for another flash rather than storing the firmware
image. This led us to believe that there was an issue with the connection between
the RP2040 and the serial flash memory device. While there were no noticeable shorts
between the two devices, we decided to re-heat the connections between the two. After
doing so and flashing another image, the device was successfully able to store it, resolv-
ing the issue.

The second difficulty came from debugging one of the EMG signal channels which
outputs a constant high voltage even without any active signal input. To troubleshoot,
we simulated voltage at each pin along that trace with LTspice and compared the
simulated voltage to the actual voltage measured with an oscilloscope. Eventually,
this problem was resolved by replacing the quad op-amp used in the signal processing
module for that channel.

8 Firmware Overview

For this circuit, the firmware, running on the RP2040, was responsible to analyzing and
communicating the current reading of each EMG channel. For the first iteration of the
firmware architecture, we had two main requirements for the first iteration.

1. Continuously read the input of 4 analog signals (processed EMG signals).

2. Send the read values of each EMG channel, along with a marker to denote which
channel it came from, via the USB connection.

To program the RP2040, we chose to use the arduino-pico library, which is a hardware
abstraction library for the RP2040 that allows it to be programmed using the Arduino
IDE. The firmware was split into two main functions, setup() and loop().

The setup() function begins by initializing 4 indicator LEDs to HIGH. This is to make
sure any firmware image flashed to the RP2040 is properly running on the micrcontroller.
Then, the USB serial connection is begun as a baud rate of 9600 bits per second.

8

https://arduino-pico.readthedocs.io/en/latest/

Code Segment 1

int serial_baud_rate = 9600;
int LED_PIN_ONE = 8;
int LED_PIN_TWO = 9;
int LED_PIN_THREE = 10;
int LED_PIN_FOUR = 11;

void setup() {
pinMode(14, OUTPUT);
digitalWrite(14, HIGH);
pinMode(15, OUTPUT);
digitalWrite(15, HIGH);
pinMode(18, OUTPUT);
digitalWrite(18, HIGH);
pinMode(23, OUTPUT);
digitalWrite(23, HIGH);
pinMode(LED_PIN_ONE, OUTPUT);
digitalWrite(LED_PIN_ONE, HIGH);
pinMode(LED_PIN_TWO, OUTPUT);
digitalWrite(LED_PIN_TWO, HIGH);
pinMode(LED_PIN_THREE, OUTPUT);
digitalWrite(LED_PIN_THREE, HIGH);
pinMode(LED_PIN_FOUR, OUTPUT);
digitalWrite(LED_PIN_FOUR, HIGH);
Serial.begin(serial_baud_rate);

}

Next, the loop() function, which is continuously called, serves the purpose of reading
each analog signal from the 4 EMG channels and sending it over serial. The addition of
x0000 to each signal is to serve as the marker for which channel the signal came from.
This is for the software to differentiate between signals. This means that each message
takes is composed of the left most digit indicating the channel number and the next
four digits indicated the 10 bit reading from the analog pin (0-1024). Once sent, the
serial interface is flushed to ensure that the messages are sent.

9

Code Segment 2

void loop() {
Serial.println(analogRead(A0) + 10000);
Serial.println(analogRead(A1) + 20000);
Serial.println(analogRead(A2) + 30000);
Serial.println(analogRead(A3) + 40000);
Serial.flush();
delay(.5);

}

9 Software Overview

The first iteration of the software, which would interface with the EMG sensing board
via serial, was split into two main functions: initialize_serial() and process_serial_input().

The initialize_serial() was designed to establish the serial connection with the hardware.
This is done using python’s serial library, where we specified a USB port, serial baud
rate, and timeout in order to establish the connection.

Code Segment 3

def initialize_serial():
arduino_port = "/dev/ttyACM0"
baud_rate = 9600
serial_port = serial.Serial(arduino_port, baud_rate, timeout=1)
return serial_port

Once established, the process_serial_input() is called in order to continuously process
data on the serial line and dynamically updated a graph with the received data. Each
received line is decoded, then the first digit is split off to determine which EMG channel
the data should be appended to. Then, the analog reading is extracted and appended
to a list of received values for the channel. Additionally, we record the time that
each message was received.. The received time was used instead of the time that the
message was processed on the microcontroller in order to minimize the amount of data
being sent via the serial line, allowing for a higher rate of EMG values. The data
processing is nested in a try-except statement due to errors that arise from bitloss in
serial communication.

10

https://pyserial.readthedocs.io/en/latest/

Code Segment 4

while True:
try:

curr_data = int(serial_port.readline().decode())
data[curr_data//10000][1].append(curr_data%10000)
data[curr_data//10000][0].append(time.perf_counter()-

start_time)
except (UnicodeDecodeError, ValueError, KeyError):

continue

In order to plot the data, a graph with four subplots, one for each channel, is initialized.
Then, each sub-graph is assigned a line to store its data. On every iteration of the while
loop, those lines are updated based on the received data. Finally, the x axis is set to
visualize the most recent ten seconds of data.

Code Segment 3

plt.ion()
fig = plt.figure()
ax1 = fig.add_subplot(111)
ax2 = fig.add_subplot(222)
ax3 = fig.add_subplot(223)
ax4 = fig.add_subplot(224)

line1, = ax1.plot(data[1][0], data[1][1], ’k-’)
line2, = ax2.plot(data[2][0], data[2][1], ’g-’)
line3, = ax3.plot(data[3][0], data[3][1], ’b-’)
line4, = ax4.plot(data[4][0], data[4][1], ’r-’)

while True:
Process serial input
line1.set_xdata(data[1][0])
line1.set_ydata(data[1][1])
line2.set_xdata(data[2][0])
line2.set_ydata(data[2][1])
line3.set_xdata(data[3][0])
line3.set_ydata(data[3][1])
line4.set_xdata(data[4][0])
line4.set_ydata(data[4][1])

11

ax1.set_xbound(lower=data[1][0][-1]-10, upper=data[1][0][-1]+10)
ax2.set_xbound(lower=data[1][0][-1]-10, upper=data[1][0][-1]+10)
ax3.set_xbound(lower=data[1][0][-1]-10, upper=data[1][0][-1]+10)
ax4.set_xbound(lower=data[1][0][-1]-10, upper=data[1][0][-1]+10)

fig.canvas.draw()
fig.canvas.flush_events()

An example plot is shown in Figure 7.

Figure 7: Sample visualization generated by a user’s laptop while running an EMG
trial.

10 Results

With the current hardware, we have received inconsistent results in processing and
analyzing EMG data from the sensing board. At times, we are able to properly receive
data. This is demonstrated in our one-channel demo. However, there are issues with
running all four channels working synchronously. During some tests, all four channels
can be properly monitored for a brief period of time, but, in most tests, only one or two
channels yield expected results while the others constantly remain undetectable. The
full demo of the current state of the system can be found here.

10.1 Limitations

Possible causes of the inconsistent functioning of all channel include:

12

https://www.youtube.com/watch?v=9YESAbq6-Ng
https://youtu.be/dAzlrd0NfQ0

1. Misplacement of the EMG electrodes on the muscle. If the electrodes are placed
improperly, they may pick up the same signal, causing their difference to be always
be 0, leading to no signal.

2. Inadequate contact between the EMG electrode and the muscle. If proper contact
isn’t established with the muscle, then the signal will be weaker, or not detectable
at all, leading to improper results.

3. Delay in serial communication. We found that, at times, there is a delay between
a physical movement and the visualization of that response. We believe this is
either because of how the serial communication is implemented or a physical limit
to how fast serial communication can be established.

These problems might have resulted in the board not being able to accurately detect
every muscle movement on all four channels.

11 Reflection

11.1 Ayush

This project was an excellent learning experience for me. It was my first hardware
project that wasn’t firmly scaffolded by external design constraints, allowing me to ex-
plore new avenues in electrical engineering. This included learning a lot about setting
my own design constraints based on a specific function I want to implement. The main
challenge I faced during this project was learning how to debug an embedded system.
Numerous times throughout the process, I wasn’t sure if there was a hardware or soft-
ware issue causing unintended results, which forced me to learn new debugging tools to
isolate the problem to one or the other and act accordingly.

Additionally, this project taught me the value of implementing features to de-risk cer-
tain aspects of the project in order to maximize the chance of meeting an intended
deliverable. For example, we wanted to establish a bluetooth connection between the
sensing board and a computer, but due to time constraints, were not able to implement
this. Thankfully, we had de-risked the bluetooth communication by also including a
serial interface to receive data, allowing us to still extract and visualize the processed
EMG signal.

11.2 Rucha

Coming into this class, I had a very minimal understanding of how circuit components
that we had learned about in ISIM could be brought together to accomplish a goal.
Through this final project, I was really able to delve deep into different filters and am-
plifier designs to understand the basics of how a signal could be processed to reach the
final goal. This project not only helped me strengthen my conceptual understanding of

13

the different circuit portions change a signal, but also gave me a chance to mathemati-
cally step my way through the circuit and analyze it. I really enjoyed this project and
believe I learned a lot from the process.

11.3 Jiayuan

I learned a lot from the technical aspect of this project, especially in designing signal
processing circuit with operational amplifiers, board population, and board debugging.
The main challenge I met in the circuit designing stage was analyzing the different filters
we researched. Some of the confusions I had in the schematics designing stage were
cleared later while debugging the board with an oscilloscope, as I physically measure
the voltage at each pin of the filters. Overall, I found this project challenging and
engaging.

12 Next Steps

To address the problems we had with inconsistent signal measurement, our next step
is to try using one electrode as the reference while placing the other electrode on the
center of a muscle, instead of placing a electrodes pair on one muscle. To develop more
meaningful features of our board, we can first improve our software for faster data
reading and add on algorithm for muscle movement classification. This project can
potentially become a interactive game for user to exercise different part muscles!

14

	Introduction
	Schematic Design
	LTspice Simulation
	Additional Parts
	Layout Design
	Iteration 1 - Two Layer Board
	Iteration 2 - Four Layer Board

	Bill of Materials
	Circuit Board Population
	Firmware Overview
	Software Overview
	Results
	Limitations

	Reflection
	Ayush
	Rucha
	Jiayuan

	Next Steps

